A Combinatorial Proof of a Weyl Type Formula for Hook Schur Polynomials

نویسنده

  • JAE-HOON KWON
چکیده

In this paper, we present a simple combinatorial proof of a Weyl type formula for hook Schur polynomials, which has been obtained by using a Kostant type cohomology formula for glm|n. In general, we can obtain in a combinatorial way a Weyl type formula for various highest weight representations of a Lie superalgebra, which together with a general linear algebra forms a Howe dual pair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Macdonald Polynomials

s for Talks Speaker: Nick Loehr (Virginia Tech, USA) (talk describes joint work with Jim Haglund and Mark Haiman) Title: Symmetric and Non-symmetric Macdonald Polynomials Abstract: Macdonald polynomials have played a central role in symmetric function theory ever since their introduction by Ian Macdonald in 1988. The original algebraic definitions of these polynomials are very nonexplicit and d...

متن کامل

Hook Length Polynomials for Plane Forests of a Certain Type

Abstract. The original motivation for study for hook length polynomials was to find a combinatorial proof for a hook length formula for binary trees given by Postnikov, as well as a proof for a hook length polynomial formula conjectured by Lascoux. In this paper, we define the hook length polynomial for plane forests of a given degree sequence type and show it can be factored into a product of ...

متن کامل

The Schur Expansion of Macdonald Polynomials

Building on Haglund’s combinatorial formula for the transformed Macdonald polynomials, we provide a purely combinatorial proof of Macdonald positivity using dual equivalence graphs and give a combinatorial formula for the coefficients in the Schur expansion.

متن کامل

A bijective proof of the hook-content formula for super Schur functions and a modified jeu de taquin

A bijective proof of the product formula for the principal specialization of super Schur functions (also called hook Schur functions) is given using the combinatorial description of super Schur functions in terms of certain tableaux due to Berele and Regev. Our bijective proof is based on the Hillman–Grassl algorithm and a modified version of Schützenberger’s jeu de taquin. We then explore the ...

متن کامل

Dual Equivalence Graphs and a Combinatorial Proof of Llt and Macdonald Positivity

We make a systematic study of a new combinatorial construction called a dual equivalence graph. We axiomatize these graphs and prove that their generating functions are symmetric and Schur positive. By constructing a graph on ribbon tableaux which we transform into a dual equivalence graph, we give a combinatorial proof of the symmetry and Schur positivity of the ribbon tableaux generating func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006